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Numerical test of finite-barrier corrections for the hopping rate in the underdamped regime
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It is shown that the large differences, which have been found in the underdamped regime, between analytical
calculations and exact numerical results for the hopping rate in a periodic potential are essentially due to
finite-barrier effects. In fact, if finite-barrier corrections are taken into account, the analytical results turn out to
be in quite good agreement with the exact ones in the full damping range below the turnover point.
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Recently, there has been considerable interest in the prob-
lem of finite-barrier corrections (FBC’s) to the escape rate of
a classical particle, coupled to a thermal bath, from a poten-
tial well. Analytical FBC’s to Kramers’s high-friction for-
mula [1] have been obtained by Pollak and Talkner [2] and
by Mel’nikov [3]; at low friction, analytical FBC’s to the
Mel’nikov-Meshkov result [4,5] have been obtained by
Mel’nikov [3].

The high-friction FBC’s have been tested [6] against exact
numerical results [7,8]. The corrections were obtained for a
single symmetric well, while the numerical results concerned
the hopping rate in a periodic cosine potential. However, in
the regime above the turnover, it has been shown that the
quantitative discrepancies (which are never very large, at
maximum of 13% in the case of a cosine potential with a
barrier Uy=4kgT) between the numerical results and Kram-
ers’s formula are essentially explained by the FBC'’s.

In the underdamped regime, discrepancies between ana-
lytical and numerical results are much larger [8,7] and still,
to our knowledge, unexplained. In fact, if the numerical re-
sults are compared to the analytical formula for the escape
rate from a symmetric well without taking into account the
FBC'’s, differences of the order of 50% are present at low
potential barriers.

In this Rapid Communication the numerical hopping rate
in a periodic potential will be compared to the analytical
escape rate from a symmetric well; in the latter result the
FBC’s will be taken into account. The aim of the work is to
check whether the above-mentioned discrepancies are due to
the FBC'’s also in the regime below the turnover, which is of
great importance, for instance, in atomic surface diffusion
[9].

The inverse lifetime (i.e., the escape rate) 1/7 of a Brown-
ian particle in a deep symmetric potential well U(x) can be
written in the form
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where U, is the height of the potential barriers confining the
particle to the well, T is the temperature, and Q is the fre-
quency of small oscillations at the bottom of the well. The
other details of the potential shape as well as the mechanism
of activation are absorbed into the coefficient A. Equation
(1) differs from the traditional definition of 1/7 by the factor
2, which accounts for two paths of escape out of a symmetric
potential well. To calculate A, one needs to solve the Fokker-
Planck equation

with appropriate boundary conditions. A detailed discussion
of this procedure can be found in the literature [5,10]. Aim-
ing at introduction of the essential quantities in a heuristic
fashion, we consider here the case of a very weak friction
when, following Kramers, one can exploit the energy diffu-
sion equation

a of _
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where J(¢e) is the energy loss for the particle with a total
energy & during its motion between the turning points

x,(e) [Ux)=¢],

xl(E)
5(8)=75(8)=7j

{2m[e—U(x)]}dx. (4)
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The energy € =0 corresponds to the top of the potential bar-
riers. Since the particles with positive energies escape out of
the potential well, Eq. (3) must be solved with the boundary
condition f(0)=0, which gives
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The lifetime is then defined by the expression

f()
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The quantity 8(¢) is then expanded in small £ and the upper
limit of integration in Eq. (6) is put equal to «, neglecting
exponentially small terms xexp[ — Uy /(kgT)]. The expansion
for 6(¢e) gives
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o is defined by the curvature of the barrier top,
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and x;=x,(e=0) is the position of the barrier top. With
these definitions, for the preexponential factor A one gets

A(y/w,kgT/U,)
kol ol p1y Y0 L a(cy+24mm2—C 11
~AT Uy ws nﬁ (Cy n ), (A1)
where
A= 0 12
=T (12)

It is seen that the shape of the potential enters this expression
through two coefficients, Uy /wS and Cy . In the case of a
cosine potential, one has

Ug 1 13
ws 3 (13)
Cy=3In2. (14)

Equation (11) holds in the limit of small A and in the lowest
order in kzT/U,. The logarithmic term is due to the slowing
down of the particle motion near the top of the barrier; the
other terms do not have a straightforward interpretation.
Generalization of Eq. (11) to the case of arbitrary A gives

(3]
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where the functions A, and A are defined by the relations

Ayg(A)= exp{ fg
A

~ a 2
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The function B;(A) depends on the coefficient Cy,,

In{1—exp[ — A(N%+1/4)]}d\
N2+ 1/4 ’
(16)

B(A)=(A2)[1-I(A)T?
+(Cy+1+In2—C)A;(A)+D(A), (18)

whereas the new functions /(A) and D(A) are defined by
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Let us consider a cosine potential of amplitude U/2, pe-

riod a, and small-oscillation frequency (). In this case,
w=Q=[272Uy/(ma*)]"? and

4yU,
kBTw ’

A= (22)

The exact rate r; in a periodic potential can be numerically
calculated by the Fourier analysis of the width of the quasi-
elastic peak of the dynamic structure factor [7,8]. The nu-
merical rate can be compared then to different analytical ap-
proximations: the Mel’nikov and Meshkov result without
FBC’s, denoted as r,, [which corresponds to Eq. (1) with A
set equal to Ay, as given by Eq. (16)]; the Kramers result
with FBC’s, denoted as r; [in this case A is given by Eq.
(11)], which is expected to be valid in the extremely under-
damped limit; the Mel’nikov result with FBC’s, denoted- as
rsp [in this case A is given by Eq. (15)], which should be
valid in the whole region below the turnover. Up to now, the
FBC’s have not been calculated in other analytical ap-
proaches such as the turnover theories by Buttiker, Harris,
and Landauer (BHL) [11] and Pollak, Grabert, and Hanggi
(PGH) [12,13]. In Figs. 1 and 2 the exact results for the
hopping rate r; (triangles) are compared to r,, ry, and
rgp; in Figs. 3 and 4 the relative differences C and C,,,
defined by
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FIG. 1. Numerical hopping rate r; (triangles); Mel’nikov-
Meshkov rate r, (dotted line) without finite-barrier corrections;
Kramers’s extremely underdamped result r; with finite-barrier cor-
rections (dashed line); Mel’nikov result 7 s With finite-barrier cor-
rections (full line). All the above quantities are reported as functions
of the friction at a fixed potential barrier of S5kpT.

Cn,=2—1, (23)

are shown as functions of y/w. It results clearly that the
introduction of the FBC’s improves largely the agreement
between numerical and analytical results. We remark that, at
vy—0, both BHL [11] and PGH [13] theories tend to the
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FIG. 2. The same as in Fig. 1, but for a barrier of 16kzT.
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FIG. 3. Relative differences C (open circles) and C,, (black
dots), as defined in Eq. (23), in the case of a barrier of 5kzT.

same limit as r,,; their difference from the exact result is
more than 40% at Uy=S5kgT. This fact shows that the larg-
est part of the difference between r,, and the exact results is
due to the FBC’s. Even at rather high barriers such as
16kgT, in the friction regime below the turnover point, a
quantitative comparison between different analytical ap-
proaches [4,11-13] may be meaningful only if the FBC’s are
introduced in the analytical calculations. As far as we know,
the low-friction FBC’s have been introduced up to now only
in the framework of the Mel’nikov-Meshkov approach. The
extremely underdamped result r, gives good estimates to the
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FIG. 4. The same as in Fig. 3, but for a barrier of 16k5T.
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hopping rate only at y/w<<1072; on the contrary, rep s a
very reliable estimate in the full friction range below the
turnover.

We can conclude that the hopping rate in a periodic po-
tential is very well approximated in any friction regime by
the escape rate from a single symmetric well. If finite-barrier
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corrections are not taken into account, the quantitative dif-
ferences between the analytical results and the exact ones are
rather large in the underdamped regime; only a qualitative
agreement is obtained. If finite-barrier corrections are intro-
duced, the quantitative agreement becomes quite good,
showing that other possible effects are essentially negligible.
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